Parameter Reduction in Estimated Model Sets for Robust Control
نویسندگان
چکیده
This paper proposes two techniques for reducing the number of uncertain parameters in order to simplify robust controller design and to reduce conservatism inherent in robust controllers. The system is assumed to have a known structure with parametric uncertainties that represent plant dynamics variation. An original set of parameters is estimated by nonlinear least-squares (NLS) optimization using noisy frequency response functions. Utilizing the property of asymptotic normality for NLS estimates, the original parameter set can be reparameterized by an affine function of the smaller number of uncorrelated parameters. The correlation among uncertain parameters is detected by the principal component analysis in one technique and optimization with a bilinear matrix inequality in the other. Numerical examples illustrate the usefulness of the proposed techniques. DOI: 10.1115/1.4000661
منابع مشابه
The effect of parameter estimation on Phase II control chart performance in monitoring financial GARCH processes with contaminated data
The application of control charts for monitoring financial processes has received a greater focus after recent global crisis. The Generelized AutoRegressive Conditional Heteroskedasticity (GARCH) time series model is widely applied for modelling financial processes. Therefore, traditional Shewhart control chart is developed to monitor GARCH processes. There are some difficulties in financial su...
متن کاملA robust least squares fuzzy regression model based on kernel function
In this paper, a new approach is presented to fit arobust fuzzy regression model based on some fuzzy quantities. Inthis approach, we first introduce a new distance between two fuzzynumbers using the kernel function, and then, based on the leastsquares method, the parameters of fuzzy regression model isestimated. The proposed approach has a suitable performance to<b...
متن کاملDelay Dependent H∞ Based Robust Control Strategy for Unified Power Quality Conditioner in a Microgrid
This paper proposes a novel robust control scheme based on delay-dependent H∞for unified power quality conditioner (UPQC) in a microgrid under the influence of the delay and parameter uncertainties. A new UPQC model considering the effects of the delay and parameter uncertainties is established. Then, the H∞ controller is designed based on the cone complementarity linearization (CCL) algorithm....
متن کاملA Robust Reliable Forward-reverse Supply Chain Network Design Model under Parameter and Disruption Uncertainties
Social responsibility is a key factor that could result in success and achieving great benefits for supply chains. Responsiveness and reliability are important social responsibility measures for consumers and all stakeholders that strategists and company managers should be concerned about them in long-term planning horizon. Although, presence of uncertainties as an intrinsic part of supply chai...
متن کاملOnline Monitoring for Industrial Processes Quality Control Using Time Varying Parameter Model
A novel data-driven soft sensor is designed for online product quality prediction and control performance modification in industrial units. A combined approach of time variable parameter (TVP) model, dynamic auto regressive exogenous variable (DARX) algorithm, nonlinear correlation analysis and criterion-based elimination method is introduced in this work. The soft sensor performance validation...
متن کاملEnhancement of Robust Tracking Performance via Switching Supervisory Adaptive Control
When the process is highly uncertain, even linear minimum phase systems must sacrifice desirable feedback control benefits to avoid an excessive ‘cost of feedback’, while preserving the robust stability. In this paper, the problem of supervisory based switching Quantitative Feedback Theory (QFT) control is proposed for the control of highly uncertain plants. According to this strategy, the unce...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010